9.5. ENDI#

Info sobre la encuesta: https://www.ecuadorencifras.gob.ec/encuesta_nacional_desnutricion_infantil/

Datos: https://www.ecuadorencifras.gob.ec/documentos/web-inec/ENDI/BDD_ENDI_R1_rds.zip

Importamos librerías

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os

sns.set()
url = 'https://www.ecuadorencifras.gob.ec/documentos/web-inec/ENDI/BDD_ENDI_R1_rds.zip'

# Download the file from `url` and save it locally under `file_name`:
import urllib.request
file_name = 'ENDI.zip'
urllib.request.urlretrieve(url, file_name)
('ENDI.zip', <http.client.HTTPMessage at 0x7fe4626a1ae0>)
# extract file
import zipfile
with zipfile.ZipFile(file_name, 'r') as zip_ref:
    zip_ref.extractall('./data/ENDI/')
# read .rds file
import pyreadr
df = pyreadr.read_r('./data/ENDI/BDD_ENDI_R1_rds/rds/BDD_ENDI_R1_f1_personas.rds')
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[4], line 2
      1 # read .rds file
----> 2 import pyreadr
      3 df = pyreadr.read_r('./data/ENDI/BDD_ENDI_R1_rds/rds/BDD_ENDI_R1_f1_personas.rds')

ModuleNotFoundError: No module named 'pyreadr'
df
OrderedDict([(None,
                         id_upm        id_viv        id_hogar            id_per  \
              0      0101500060  010150006003  01015000600301  0101500060030101   
              1      0101500060  010150006003  01015000600301  0101500060030102   
              2      0101500060  010150006003  01015000600301  0101500060030103   
              3      0101500060  010150006003  01015000600301  0101500060030104   
              4      0101500060  010150006003  01015000600301  0101500060030105   
              ...           ...           ...             ...               ...   
              90027  2301569009  230156900907  23015690090701  2301569009070102   
              90028  2301569009  230156900907  23015690090701  2301569009070103   
              90029  2301569009  230156900908  23015690090801  2301569009080101   
              90030  2301569009  230156900908  23015690090801  2301569009080102   
              90031  2301569009  230156900908  23015690090801  2301569009080103   
              
                               id_mef fecha_anio fecha_mes fecha_dia      fexp estrato  ...  \
              0      0101500060030101       2022        07        28  0.508820    2712  ...   
              1                   NaN       2022        07        28  0.508820    2712  ...   
              2      0101500060030103       2022        07        28  0.508820    2712  ...   
              3                   NaN       2022        07        28  0.508820    2712  ...   
              4                   NaN       2022        07        28  0.508820    2712  ...   
              ...                 ...        ...       ...       ...       ...     ...  ...   
              90027  2301569009070102       2023        06        15  0.595402    2321  ...   
              90028               NaN       2023        06        15  0.595402    2321  ...   
              90029               NaN       2023        06        15  0.595402    2321  ...   
              90030  2301569009080102       2023        06        15  0.595402    2321  ...   
              90031               NaN       2023        06        15  0.595402    2321  ...   
              
                     f1_s6_3  f1_s6_4_1  f1_s6_4_2  f1_s6_5_1  f1_s6_5_2 f1_s6_5_3  f1_s6_6  \
              0         13.2         16         30         28          7      2022      NaN   
              1          NaN        NaN        NaN        NaN        NaN       NaN      NaN   
              2          NaN        NaN        NaN        NaN        NaN       NaN      NaN   
              3          NaN        NaN        NaN        NaN        NaN       NaN      NaN   
              4          NaN        NaN        NaN        NaN        NaN       NaN        4   
              ...        ...        ...        ...        ...        ...       ...      ...   
              90027     13.3         14         42         20          6      2023      NaN   
              90028     11.1         12         38         20          6      2023      NaN   
              90029      NaN        NaN        NaN        NaN        NaN       NaN      NaN   
              90030     13.2         16         33         15          6      2023      NaN   
              90031     10.5         16         30         15          6      2023      NaN   
              
                     quintil  pobreza  nbi_1  
              0          5.0      0.0    0.0  
              1          5.0      0.0    0.0  
              2          5.0      0.0    0.0  
              3          5.0      0.0    0.0  
              4          5.0      0.0    0.0  
              ...        ...      ...    ...  
              90027      4.0      0.0    1.0  
              90028      4.0      0.0    1.0  
              90029      2.0      1.0    1.0  
              90030      2.0      1.0    1.0  
              90031      2.0      1.0    1.0  
              
              [90032 rows x 111 columns])])
df = pd.DataFrame(df[None])
df['altitud']
sns.scatterplot(data=df, x="edaddias", y="altitud")  
<Axes: xlabel='edaddias', ylabel='altitud'>
_images/9fe0a87a56d173b1b78f688d9283b1f742d8bcdae1f3b62bc31a217a7c840856.png